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Abstmt: Synthesis of I-(2-0-mcthyl+-D-arabino~l)tJ1yminc (7) has bum accmplishcd starting from mahyl D- 

arabhofuranosi&. Subsequult ‘incorpaatlon of the pllqhmidite moncmer 9 inlo oligkeoxymcleotides affonkd the fi 

oligonucleotide an&goes containing 2’49~methylaabimmu~leoside monomas. 

Basic req ukments for antisense oligonucleotid~ as potential inhibitors of gene expression include. for 

example, enhanced stability towards cellular nucleases and efficient hybridization to target nucleic acids.lV2 

Chemically modified oligonucleotide analogues3 may fulfil these criteria, and 2’-0-methyloligoribonucleotides 

have been used as chemically and enzymatically stable RNA-substitutes for various biological cxpeximents.4*s 

Thus, uniform 2’-O-methyl-M0 derivatization of a DNA-strand increases the thermal stability of DNA:DNA 

and DNA:RNA hybridsP and incorporation of a 2’-0-methylribonucleside one to five times in oligodeoxy- 

nucleotides conserves or slightly improves the hybridization properties.’ In addition, 2’-O-methyloligo- 

ribonucleotidcs are resistant towards degradation by RNA- and DNA-specific nucleases although they are 

degraded by a dual RNA/DNA active enzyme.s The gene regulatory potential of 2’-O-methyl- 

oiigoribonucleotides is hampered by nonspecific interactions7 and inability to stimulate RNase H activity.” 

Oligonucleotides containing arabinonucleosides, have been synthesized using 2’-0-acylated’ as well as 2’-0- 

unprotected’ arabmonucleoside phosphoramidite synthons. Incorporation of one arabinonucleoside in the 

middle of a self-complementary oligodeoxynucleotide only slightly weakens the thermal stability of the 

duplex.’ The above lead us to develop a versatile synthetic strategy of the novel 2’-O+nethylarabinonucleoside 

7, which was subsequently incorporated into novel oligodeoxynucleotides using the phosphoramidite synthon 

9. These oligomers are the first examples of oligonucleotide analogues containing 2’-0-akyl arabinonucleoside 

monomers. 

Selective 3’-O- and 5’-0-prorection of methyl D-arabinofuranoside’” was accomplished in 87% yield 

using the bidentate reagent 1.3-dichlom-1 ,I 3.3~tetraisopropyldiSxane to give 1 (scheme 1). 2’-0-Methylation 

of 1 was achieved using either sodium hydride/methyl iodide in anhydrous DMF (for the b-anomer, affording 

28 in 96% yield) or 2-reti-butylimino-2-dkthylamino- 1.3-dimethylperhydro- 1,3,2diazaphosphorine 

(BDDDP)/methyl iodide in anhydrous acctonitrile (for the a-ano-. affording 2a in 42% yield). Use of the 

sterically hindered organic base BDDDP and methyl iodide for methylation is well described for ribo- 
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nucleosides.1’ Coupling of 2’-O-methyl derivative 2 with silylated thymine’* was unsuccessful due to 

instability of the disiloxane moiety towards TMS-triflate as reported earlier. r3 Therefore, the anomeric mixture 

2 was deprotected using tetra-n-butylammoniumfluoride in THF to give 3 in 8 1% yield. Subsequent acetylation 

and acetolysis afforded 1,3,5-wi-0-acetyi-2’-O-metkyl derivative 4 ln 90% yield. Coupling between 4 and 

silylated thymincl 2 was achieved using the silyl l-Wart-3ohnson/Eiifer method as modified by Vorbrliggen 

rt u~.I~*~~ with TMS-triflate as the Friedel-Craft catalyst to give, after 9 days at 5 OC, an anomerlc mixture 

of 5 and 6 (inseparable using conventional column chromatography). After HPLC-separation (eluting with 20% 

ethanol in H,O, v/v) the @tnomer 5 was isolated in 35% yield and the or-anomcr 6 in 40% yield. The 

configuration of the anotners was confll by ‘H NOE-difference expuimcnts. The key NOE contact 

between H-l ’ and H-4’ was especially useful: it was not observed for the a-anomer 6 but for the Banomer 

5 (irradiation of H- 1’ gives a NOE-effect (1.6%) to H-4’ while irradiation of H-4’ gives a NOE-cffect (2.4%) 

to H-l ‘). These results were supported from evaluation of the coupling-constant JlW2 which is smaller for the 

a-anomer (J = 1.5 Hz) compared to the P_anotner (J = 3.8 Hz). l6 Nucleoside 5 was deprotected using saturated 

methanolic ammonia affording I-(2-0-methyl-p-D-arabinofuranosyl)thymine (7) in 88% yield.t7 Synthesis of 

the corresponding cytosine and uracil derivatives has been reported earlier using a troublesome and low yield 

strategy. 18-u) Reaction of 7 with 4,4’-dlmetoxytritylchlorlde in anhydrous pyridine gave the Y-O-protected 

nuckoside 8 in 70% yield. Phosphitylation” of 8 by reaction with 2-cyanoethyl NJMiisopropylphosphor- 

amiduchloridite and N,fVdiisopropylethylamine ia anhydrous dichlormethane afforded the nucleoside 

phosphoramidite 9 in %% yield after precipitation from petroleum ether.2223 
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a) NaH. CR& anhydrma DIW b) BDDDP, CH,I. aahydrotu CHsCX C) n-Ba,NF lip TIFF; d) 40, a+drous pyridiae: e) glacial 
AcoW Afao.coac. Hsso4; 9silyhtEdshymine.anbydrous 1,2dic hlomhme, TMS-aiflate: g) saaua&d mertuRolic NH,: h) DM’ICI. 
aahvdrous pyridine: i) NWdBsopmpylcthyIamfae. NCCII$~OP(Cl)N(IPr~, anhydms CHzCb. T = thynut+1-yl; DMT = 4.4’- 
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Oligomcrs A-H wezc synt.kskd on an automated DNA 

SynM usin# 9 and eorrrmQcial 2’&oxynuclcvsi&~ 

cyal?octhylphosphorurridites. The coupling efficiency of the 
modiied phosphoramS~ 9 was approximately 93% (12&n 

coupling) compared to approximptely 9946 for LlnmodXal 
monomus (2-rnin wupling) as monitored by the release of the 
dimcthoxyhityl cation. The DMT-protectal oligonucleotkk~ wue 

removed from the solid support by treatment with concentrated 
ammoniafor2daysatmom Uqemtum. anddisposablelevuX- 

phase chromatography cartridges were used for purification. As a 
confkmation of the syntheses of the novel oligodcoxynucleotidc 

analogues the compokion of oligomer B (containing one modified 
monomer) was vcsifkd by matrix assisted laser dewption mass 
specuomcuy: The obscrval relative molecular mass (5062.1 Da) 
corresponds within experimental emx with the calculated (5065.4 

Da). Besides, we are currently performing a 2D-Nh4R-sl1~ture 
analysis of the duplex of Ii with its complcmcntary DNA-strand. 
Preliminary data from this analysis indicate that a stable duplex 
exists at room temperature (figure 1) as the expected intra- and 

intcrstrand conncctivitics are present. 
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Figure 1. ‘H NMR spectrum of 

T-Mr region of duplex between 
H and compkmcntary DNA 

Table 1. Sequences synthesized, hybridization properties, and enzymatic stability 

sequence TXC t,nlmin H. 

Y-CACCAACITCIT CCACA3’ (A) 64.0 
Y-CACCAACXTCI-KCA CA-3’ (B) 58.0 

S-CACCAACXTCTXCCACA-3’ Q 54.0 

5’-lTAAc!l-WTT CACATTC-3’ (II) 54.0 

5’-ITAACIXYT CACATXC-3’ (E) 53.5 

5’-lTAAClXXT CAcAxxc-3’ (F) 50.0 

5’-GGcTATATGCG-3’ (G) 45.0 

5’-GGcrAxA-Iuas3’ (H) 39.0 

-1 1.17 

-1 1.05 

-1 1.04 
-1 1.15 

>30 1.07 

>30 1.06 
1.21 
1.10 

A = 2’_dcoxyadenasinc: C = 2’&oxycytid& 0 = 2’dwxy~umosinc; T = thymid& X - 1_(2l)-mclhyl-@- 
D-arabwl)thymine (7): T, = melting tcmpnhrre: I,, - hyperchromicity half-lik 9 = hypedmmi- 
city (enzymatic) 

As depict4 in Table 1, incoqomtion of 2’-O-methyl arabbmnu~leoside 7 one a two times in the middle 

of a sequence (It, C and H) destabilizes (but not prevents) the duplex with complementary DNA (AT, = 4-6 

oC/modification) while one or two end-modifications (E and F’) weaken the duplex stability to only a small 

extent (AT, = OS-2 oC!/modXcation). The enzymatic stability of oligomus A-F was tested toumrds make 

venom phosphodicsterase (3’-exonucleasc). The increase in abs&~~~ (260 nm) during digestion was fol- 
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lowed and the enzymatic hyperchromicitles calculated. 3’-Bnd modit%d oligomers (E and F) are effectively 

protected against 3’cxonucleolytic degradation (tin > 30 ml@. Results from slmIlar experiments an .B and 

C indicate a rapid degradation from the 3’cnd (ttn - 1 mln, He = 1.04, 1.05) affording a 3’und proteetal 12- 

and 8-mer, respectively. 

In conclusion, I-(2-0-methyl-B-D-arabinofuranosyl)thymine (7) has been obtaIned from methyl-D- 

arabiiofuranoside using a generally Practicable synthetic strategy. Incorporation of this novel nucleoslde into 

oligodeoxynucleotides induces a significant inctease in the stabll towards 3’-exonucleolytlc degradation 

while conserving the duplex-forming capacity. Futher evaluation of a- and b2’-0-methylarabiio oligonucleo- 

tides are in progress and will be reported in due course. 
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