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Abstract: Synthesis of 1-(2-O-mcethyl-B-D-arabinofuranosyl)thyminc (7) has been accompllshed starting from methyl D-
arabinofuranoside. Subsequent incorporation of the phosphoramidite monomer 9 into oligodeoxynucleotides afforded the first
oligonucleotide analogues containing 2’-0-methylarabinonucleoside monomers.

Basic requirements for antisense oligonucleotides as potential inhibitors of gene expression include, for
example, enhanced stability towards cellular nucleases and efficient hybridization to target nucleic acids. !
Chemically modified oligonucleotide analogucs3 may fulfil these criteria, and 2’-O-methyloligoribonucleotides
have been used as chemically and enzymatically stable RNA-substitutes for various biological cxpcriments."5
Thus, uniform 2’-O-methyl-ribo derivatization of a DNA-strand increases the thermal stability of DNA:DNA
and DNA:RNA hybrids,* and incorporation of a 2’-O-methylribonucleoside one to five times in oligodeoxy-
nucleotides conserves or slightly improves the hybridization properties. In addition, 2’-O-methyloligo-
ribonucleotides are resistant towards degradation by RNA- and DNA-specific nucleases although they are
degraded by a dual RNA/DNA active enzyme’ The gene regulatory potential of 2’-O-methyl-
oligoribonucleotides is hampered by nonspecific interactions’ and inability to stimulate RNase H activity.’
Oligonucleotides containing arabinonucleosides, have been synthesized using 2’-0-acylatcds as well as 2°-O-
unproteo:ted9 arabinonucleoside phosphoramidite synthons. Incorporation of one arabinonucleoside in the
middle of a self-complementary oligodeoxynucleotide only slightly weakens the thermal stability of the
duplcx.8 The above lead us to develop a versatile synthetic strategy of the novel 2°-O-methylarabinonucleoside
7. which was subsequently incorporated into novel oligodeoxynucleotides using the phosphoramidite synthon
9. These oligomers are the first examples of oligonucleotide analogues containing 2°-0O-alkyl arabinonucleoside
monomers.

Selective 3’-O- and 5’-O-protection of methyl D-arabinofuranoside'? was accomplished in 87% yield
using the bidentate reagent 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane to give 1 (scheme 1). 2°-O-Methylation
of 1 was achieved using either sodium hydride/methyl iodide in anhydrous DMF (for the B-anomer, affording
2B in 96% yicld) or 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine
(BDDDP)/methyl iodide in anhydrous acetonitrile (for the a-anomer, affording 2a in 42% yield). Use of the
sterically hindered organic base BDDDP and methyl iodide for methylation is well described for ribo-

6941



6942

2 was unsuccessful due to

nucleosides.!! Coupling of 2’-O-methyl derivative 2 with silylated thymine!
instability of the disiloxane moiety towards TMS-triflate as reported earlier.!> Therefore, the anomeric mixture
2 was deprotected using tetra-n-butylammoniumfluoride in THF to give 3 in 81% yield. Subsequent acetylation
and acetolysis afforded 1,3,5-tri-O-acetyl-2’-O-methyl derivative 4 in 90% yield. Coupling between 4 and
silylated thymine'? was achicved using the silyl Hilbert-Johnson/Birkofer miethod as modified by Vorbriiggen
et al."15 with TMS-triflate as the Friedel-Craft catalyst to give, after 9 days at § °C, an anomeric mixture
of 5 and 6 (inseparable using conventional column chromatography). After HPLC-separation (eluting with 20%
ethanol in HyO, v/v) the B-anomer 5 was isolated in 35% yield and the o-anomer 6 in 40% yield. The
configuration of the anomers was confirmed by 'H NOE-difference experiments. The key NOE contact
between H-1’ and H-4" was especially useful: it was not observed for the -anomer 6 but for the B-anomer
§ (irradiation of H-1" gives a NOE-effect (1.6%) to H-4’ while irradiation of H-4> gives a NOE-effect (2.4%)
to H-1"). These results were supported from evaluation of the coupling-constant J, , which is smaller for the
o-anomer (J = 1.5 Hz) compared to the B-anomer (J = 3.8 Hz).'® Nucleoside 5 was deprotected using saturated
methanolic ammonia affording 1-(2-O-methyl-B-D-arabinofuranosyl)thymine (7) in 88% yield.!” Synthesis of
the corresponding cytosine and uracil derivatives has been reported earlier using a troublesome and low yield
strategy.'®-20 Reaction of 7 with 4,4’-dimetoxytritylchloride in anhydrous pyridine gave the 5-O-protected
nucleoside 8 in 70% yield. Phosphitylation21 of 8 by reaction with 2-cyanoethyl N,N-diisopropylphosphor-
amidochloridite and NN-diisopropylethylamine in anhydrous dichlormethane afforded the nucleoside
phosphoramidite 9 in 96% yield after precipitation from petroleum ether.2>3
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a) NaH, CH,}, anhydrous DMF; b) BDDDP, CH,l, anhydrous CH;CN; ) 2-BuyNF in THF; d) Ac,0, anhydrous pyridine; ¢} glacial
AcOH, Ac,0, conc. H,SO; f) silylated thymine, anhydrous 1,2-dichlorethane, TMS-triflate; g) saturated methanolic NH: h) DMTCI,
anhydrous pyridine; i) N.N-diisopropylethylamine, NCCH,CH,OP(CI)N(iPr),, anhydrous CH,Cl,. T = thymin-1-yl; DMT = 44°-
dimethoxytrityl '

Scheme 1



Oligomers A-H were synthesized on an automated DNA
synthesizer using 9 and commercial 2’-deoxynucleoside-f-
cyanoethylphosphoramidites. The coupling efficiency of the
modified phosphoramidite 9 was approximately 93% (12-min
coupling) compared to approximately 99% for unmodified
monomers (2-min coupling) as monitored by the release of the
dimethoxytrityl cation. The DMT-protected oligonucieotides were
removed from the solid support by treatment with concentrated
ammonia for 2 days at room temperature, and disposable reverse-
phase chromatography cartridges were used for purification. As a
confirmation of the syntheses of the novel oligodeoxynucleotide
analogues the composition of oligomer B (containing one modified
monomer) was verified by matrix assisted laser desorption mass
spectrometry: The observed relative molecular mass (5062.1 Da)
corresponds within experimental error with the calculated (5065.4
Da). Besides, we are currently performing a 2D-NMR-structure
analysis of the duplex of H with its complementary DNA-strand.
Preliminary data from this analysis indicate that a stable duplex
exists at room temperature (figure 1) as the expected intra- and
interstrand connectivitics arc present.
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Figure 1. 'H NMR spectrum of
T-Me region of duplex between
H and complementary DNA

Table 1. Sequences synthesized, hybridization properties, and enzymatic stability

Sequence TJ/C t,,/min H,

5’-CACCAACTTCTTCCACA-3’ (A) 64.0 ~1 1.17
5'-CACCAACXTCTTCCACA-3’ (B) 58.0 ~1 1.05
5'-CACCAACXTCTXCCACA-3' (O) 54.0 ~1 1.04
5'-TTAACTTCTTCACATTC-3" (D) 540 ~1 1.15
5’-TTAACTTCTTCACATXC-3" (E) 53.5 >30 1.07
5-TTAACTTCTTCACAXXC-3' (F) 50.0 >30 1.06
5'-GGCTATATGCG-3’ (G) 45.0 1.21
5’-GGCTAXATGCG-3' (H) 39.0 1.10

A = 2’-deoxyadenosine: C = 2°-deoxycytidine; G = 2'-deoxyguanosine; T = thymidine; X = 1-(2-O-methyl-§-
D-arabinofuranosyl)thymine (7); T, = melting temperature; t,, = hyperchromicity half-life; H, = hyperchromi-

city (enzymatic)

As depicted in Table 1, incorporation of 2’-O-methyl arabinonucleoside 7 one or two times in the middle
of a sequence (B, C and H) destabilizes (but not prevents) the duplex with complementary DNA (AT, = 4-6
°C/modification) while one or two end-modifications (E and F) weaken the duplex stability to only a small
extent (AT, = 0.5-2 °C/modification). The enzymatic stability of oligomers A-F was tested towards snake
venom phosphodiesterase (3’-exonuclease). The increase in absorbance (260 nm) during digestion was fol-
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lowed and the enzymatic hyperchromicities calculated. 3°-End modified oligomers (E and F) are effectively
protected against 3’-exonucleolytic degradation (t,, > 30 min). Results from similar experiments on B and
C indicate a rapid degradation from the 3’-end (t; , ~ 1 min, H, = 1.04, 1.05) affording a 3’-end protected 12-
and 8-mer, respectively.

In conclusion, 1-(2-O-methyl-pB-D-arabinofuranosyl)thymine (7) has been obtained from methyl-D-
arabinofuranoside using a generally practicable synthetic strategy. Incorporation of this novel nucleoside into
oligodeoxynucleotides induces a significant increase in the stability towards 3’-exonucleolytic degradation
while conserving the duplex-forming capacity. Futher evaluation of o- and -2’ -O-methylarabino oligonucleo-
tides are in progress and will be reported in due course.
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